If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+6t-30=0
a = 5; b = 6; c = -30;
Δ = b2-4ac
Δ = 62-4·5·(-30)
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{159}}{2*5}=\frac{-6-2\sqrt{159}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{159}}{2*5}=\frac{-6+2\sqrt{159}}{10} $
| 2(x-12)=3(x-7) | | x+120=x+80 | | 2(x-12)=3(x-70 | | 31=-2(9k-5) | | 4-p=9 | | P=m2/2-mm=3 | | 6+6x=7x-3 | | 45x=45x | | 13.4w+17=5w=4 | | 36e^2−132e+121=0 | | r/2+0.4=-2.45 | | 36e2−132e+121=0 | | 4x+8=2x+30* | | 0.9=k(0.4) | | 0.9=k0.4 | | 1/5n+15n=0 | | 1/5n+-15n=0 | | -7+4w-3(w-2)=9(w+1)-(8w+10) | | 52=(4x+2) | | 11x–44=5x+15 | | 1/4(y+5)+6=1/3(4y-1)-13 | | -19=4+8(z+6) | | (1/4)(y+5)+6=(1/3)(4y-1)-13 | | 11(x–4)=5(x+3) | | X-2/x=3 | | -2u+26=4(u+8) | | -1+16x=95 | | 9 x = − 15 + 2 x | | -1+16x=90 | | 7d+3d=15 | | (4x+2)=52 | | 26=5v-6v |